
#1

Introduction to the

framework

write@robertogallea.com | http://www.robertogallea.com

mailto:write@robertogallea.com

What is Laravel

 Open Source PHP-based MVC framefork

 Lightweight

 Many out-of-the-box feature

 Multi-user authentication and authorization

 Templating engine

 Unit-Testing engine

 Security

 …

 Large and active community

Worksop outline

About Laravel

 Installation

Laravel folder structure

Build sample application

Installation

 Requirements (as for v5.6, latest LTS)

 PHP >= 7.1.3

 OpenSSL PHP Extension

 PDO PHP Extension

 Mbstring PHP Extension

 Tokenizer PHP Extension

 XML PHP Extension

 Ctype PHP Extension

 JSON PHP Extension

 Composer

 Mysql (or other supported DBMS)

Installation

 After installing composer…

composer global require "laravel/installer"

laravel new blog

php artisan serve

Directory structure

Core code of application

Application bootstrapping

Configuration files for application and modules

Database models, factories and seeds

Index page and public assets (images, js, css, …)

Views and uncompiled assets (LESS, SASS, JS, language files)

Route definitions

Compiled views, logs, uploaded files, …

Automated application tests

Composer depndencies

Demo application
Blog backend

First application

 Blog back-end

 Create, list and delete blog posts

 Posts have title, content, author, creation datetime

1

2

3

4

5

6
7

8

Database migrations
Database meta-model

Database setup

 Create mysql database «laravel_tutorial»

 Using phpMyAdmin

 ..or with command line

 >> mysql –u root –p

 >> create database laravel_tutorial

 Edit .env file:

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=blog
DB_USERNAME=root
DB_PASSWORD=

What are migrations?

 Migration is like source code versioning for

database model

 Used for keeping in sync database models across

develop machines

 Prevent from manually adding/removing

tables/columns or other database elements

Create database schema (migration)

php artisan make:migration create_posts_table --create=posts

Migration name Table name

Run migration

 Each migration file created with a timestamp followed by

name

 Executes the migrations in order

 Check the database, «posts» table has been created

php artisan migrate

Models
Objects mapping database entities

Create Model

Laravel Object-Relational Mapping (ORM)

Create Post model using

app/Post.php created

php artisan make:model Post

Conventions

Object In DB In Eloquent Override

Table «posts» assumed class Post protected $table =

‘my_posts’

Key «id» assumed $obj->id protected $primaryKey =

‘p_id’

Creation date «created_at» assumed $obj-

>created_at

const CREATED_AT =

‘creation_date’

Update date «updated_at» assumed $obj-

>updated_at

const UPDATED_AT =

‘update_date’

Every column is normally accessed as $obj->col_name using

PHP magic methods

Routes
The application endpoints

Defining routes

Define web endpoints for the application

GET / – lists the available posts

POST /post – creates a new post

DELETE /post/{id} – deletes a post with {id} key

Edit file routes/web.php

Views
Presentation of content

Displaying a view

Views are defined as files named

{filename}.blade.php under /resources/views

Display a view from the controller returning it

by its name

Main page

Defining a template layout

Create the file

resources/views/layout.blade.php

Defining a template view

Create the file

resources/views/posts.blade.php

Define a template sub-view

Create the file

resources/views/errors.blade.php

Layout.blade.php

<h1>abc</h1>

posts.blade.php

@yield(‘content’)

@section(‘content’)

<div>content</div>

@endsection

@extends(‘layout’)

Rendered view

<h1>abc</h1>

<p>print errors</p>

<div>content</div>

@include(‘errors’)

errors.blade.php

<p>print errors</p>

Post creation (input validation)

Post creation (object creation)

Loading data

 Laravel uses Eloquent engine

 Example: load blog posts ordered by ascending

creation date

$posts = Post::orderBy('created_at', 'asc')->get();

Passing data to view

Pass $posts variable to view

and name it «posts»

Deleting posts

Using Controllers

 Till now we used closures for managing routes

 Delegate actions to Controllers

 Run php artisan make:controller PostController

 Creates Http/Controllers/PostController.php

 Edit web.php

Controller Method

Authentication scaffolding
Leveraging built-in authentication layer

Auth Scaffolding

 Add Auth scaffolding

 Adds:

 Auth::routes(); in web.php. Try launching php artisan

route:list

 Four controllers under Controllers/Auth

 Two views under resources/views

 Two views under resources/views/password

php artisan make:auth

Protecting resources

 Use Auth Middleware

 It redirects user to login if not authenticated

 Inside PostController.php →

Middleware: Piece of code that filters

request before or after the request is

executed

Middleware

Middleware

Model relations
One-to-many example

Post-User Relation

 Each post is written by one user

 Each user writes many posts

 One-to-many relation

 Use of model relations

Required modifications

 Modify field in database model (migration)

 Add relation to User model in Post model

 Add relation to Post model in User model

 Modify PostController@store to save current user

id as author

 Modify view to…

 Not ask for author since author is current user

 In posts list, retrieve author name from author relation

Implementing relation in blog

application

 Remove «author» string field from create_posts_table

migration

 Add «user_id» integer field in create_posts_table

migration

 $table->integer('user_id')->index(); // Good idea to set it as index

 Rerun migration

 php artisan migrate:fresh

 In Post.php add fillable fields

 Only Fillable attributes can be mass assigned (more on this later)

 protected $fillable = ['title', 'content’]; // in Post.php

hasMany relation

 Access posts by writing

 $user = User::find(1);

 $user->posts;

belongsTo relation

 Access user by writing

 $post = Post::find(1);

 $post->user;

Editing view to reflect relations

Setting post user as the current user

 Remove author field inside

posts.blade.php

 Update PostController@store

What’s next

 Model binding

 Authorization scaffolding

 Custom Requests

 Using middlewares

 Defining middlewares

 Event dispatching, observing and listening

 …

