
#1

Introduction to the

framework

write@robertogallea.com | http://www.robertogallea.com

mailto:write@robertogallea.com

What is Laravel

 Open Source PHP-based MVC framefork

 Lightweight

 Many out-of-the-box feature

 Multi-user authentication and authorization

 Templating engine

 Unit-Testing engine

 Security

 …

 Large and active community

Worksop outline

About Laravel

 Installation

Laravel folder structure

Build sample application

Installation

 Requirements (as for v5.6, latest LTS)

 PHP >= 7.1.3

 OpenSSL PHP Extension

 PDO PHP Extension

 Mbstring PHP Extension

 Tokenizer PHP Extension

 XML PHP Extension

 Ctype PHP Extension

 JSON PHP Extension

 Composer

 Mysql (or other supported DBMS)

Installation

 After installing composer…

composer global require "laravel/installer"

laravel new blog

php artisan serve

Directory structure

Core code of application

Application bootstrapping

Configuration files for application and modules

Database models, factories and seeds

Index page and public assets (images, js, css, …)

Views and uncompiled assets (LESS, SASS, JS, language files)

Route definitions

Compiled views, logs, uploaded files, …

Automated application tests

Composer depndencies

Demo application
Blog backend

First application

 Blog back-end

 Create, list and delete blog posts

 Posts have title, content, author, creation datetime

1

2

3

4

5

6
7

8

Database migrations
Database meta-model

Database setup

 Create mysql database «laravel_tutorial»

 Using phpMyAdmin

 ..or with command line

 >> mysql –u root –p

 >> create database laravel_tutorial

 Edit .env file:

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=blog
DB_USERNAME=root
DB_PASSWORD=

What are migrations?

 Migration is like source code versioning for

database model

 Used for keeping in sync database models across

develop machines

 Prevent from manually adding/removing

tables/columns or other database elements

Create database schema (migration)

php artisan make:migration create_posts_table --create=posts

Migration name Table name

Run migration

 Each migration file created with a timestamp followed by

name

 Executes the migrations in order

 Check the database, «posts» table has been created

php artisan migrate

Models
Objects mapping database entities

Create Model

Laravel Object-Relational Mapping (ORM)

Create Post model using

app/Post.php created

php artisan make:model Post

Conventions

Object In DB In Eloquent Override

Table «posts» assumed class Post protected $table =

‘my_posts’

Key «id» assumed $obj->id protected $primaryKey =

‘p_id’

Creation date «created_at» assumed $obj-

>created_at

const CREATED_AT =

‘creation_date’

Update date «updated_at» assumed $obj-

>updated_at

const UPDATED_AT =

‘update_date’

Every column is normally accessed as $obj->col_name using

PHP magic methods

Routes
The application endpoints

Defining routes

Define web endpoints for the application

GET / – lists the available posts

POST /post – creates a new post

DELETE /post/{id} – deletes a post with {id} key

Edit file routes/web.php

Views
Presentation of content

Displaying a view

Views are defined as files named

{filename}.blade.php under /resources/views

Display a view from the controller returning it

by its name

Main page

Defining a template layout

Create the file

resources/views/layout.blade.php

Defining a template view

Create the file

resources/views/posts.blade.php

Define a template sub-view

Create the file

resources/views/errors.blade.php

Layout.blade.php

<h1>abc</h1>

posts.blade.php

@yield(‘content’)

@section(‘content’)

<div>content</div>

@endsection

@extends(‘layout’)

Rendered view

<h1>abc</h1>

<p>print errors</p>

<div>content</div>

@include(‘errors’)

errors.blade.php

<p>print errors</p>

Post creation (input validation)

Post creation (object creation)

Loading data

 Laravel uses Eloquent engine

 Example: load blog posts ordered by ascending

creation date

$posts = Post::orderBy('created_at', 'asc')->get();

Passing data to view

Pass $posts variable to view

and name it «posts»

Deleting posts

Using Controllers

 Till now we used closures for managing routes

 Delegate actions to Controllers

 Run php artisan make:controller PostController

 Creates Http/Controllers/PostController.php

 Edit web.php

Controller Method

Authentication scaffolding
Leveraging built-in authentication layer

Auth Scaffolding

 Add Auth scaffolding

 Adds:

 Auth::routes(); in web.php. Try launching php artisan

route:list

 Four controllers under Controllers/Auth

 Two views under resources/views

 Two views under resources/views/password

php artisan make:auth

Protecting resources

 Use Auth Middleware

 It redirects user to login if not authenticated

 Inside PostController.php →

Middleware: Piece of code that filters

request before or after the request is

executed

Middleware

Middleware

Model relations
One-to-many example

Post-User Relation

 Each post is written by one user

 Each user writes many posts

 One-to-many relation

 Use of model relations

Required modifications

 Modify field in database model (migration)

 Add relation to User model in Post model

 Add relation to Post model in User model

 Modify PostController@store to save current user

id as author

 Modify view to…

 Not ask for author since author is current user

 In posts list, retrieve author name from author relation

Implementing relation in blog

application

 Remove «author» string field from create_posts_table

migration

 Add «user_id» integer field in create_posts_table

migration

 $table->integer('user_id')->index(); // Good idea to set it as index

 Rerun migration

 php artisan migrate:fresh

 In Post.php add fillable fields

 Only Fillable attributes can be mass assigned (more on this later)

 protected $fillable = ['title', 'content’]; // in Post.php

hasMany relation

 Access posts by writing

 $user = User::find(1);

 $user->posts;

belongsTo relation

 Access user by writing

 $post = Post::find(1);

 $post->user;

Editing view to reflect relations

Setting post user as the current user

 Remove author field inside

posts.blade.php

 Update PostController@store

What’s next

 Model binding

 Authorization scaffolding

 Custom Requests

 Using middlewares

 Defining middlewares

 Event dispatching, observing and listening

 …

