
#2

Handling

Requests and Events

write@robertogallea.com | http://www.robertogallea.com

mailto:write@robertogallea.com

Worksop outline

Model binding

Authorization scaffolding

Custom Request handlers

Middlewares

Using Events

Model binding
Automatically injecting models in controllers’ actions

Model binding

 If route parameter is type hinted, its value considered as the row id key, and

model is automatically loaded



Model binding

 What if… I don’t want to show id in links?

 Example: use Uuid (uuid4) → random alphanumeric string, can (and should)

supposed as universally unique*

 Use a key different than primaryKey, by overriding model method

getRouteKeyName()

Add migration for uuid

php artisan make:migration add_uuid_to_posts
class AddUuidToPosts extends Migration
{

public function up()
{

Schema::table('posts', function($table) {
$table->string('uuid',36)->unique();

});
}

public function down()
{

Schema::table('posts', function($table) {
$table->dropColumn('uuid');

});
}

}

Authorization scaffolding
Gate definition

Define access to resources

 Out-of-the-box authorization layer

 Gates

 Test if certain user is allowed to access some resource

 Example: a post can be deleted only by its creator

 Condition: author_id === authenticated_user_id

Gate definition

 For being used, Gates must be defined

 Generally, they are defined in Service Providers

 Define Gates in

AuthServiceProvider

Service Provider: Piece of code that

«bootstraps» application core components

 Use them inside Controllers to test if user can access

the resource

 Note: For testing current authenticated user

Gate::allows(‘delete-post’, $post)

Auth::user()->can(‘delete-post’,$post)

 Note: Gate::denies(‘delete-post’,$post) is the inverse

Gate usage

Gate usage

 Conditionally render view according to gates

Custom Requests
Decoupling input validation from controllers

Custom requests

Used for moving data validation logic

outside of controller

Cleaner!

Defining custom request

 Run php artisan make:request StorePostRequest

 Run php artisan make:request DeletePostRequest

 Creates app/Http/Requests/StorePostRequest.php
and DeletePostRequest.php

 Four methods:

 authorize() – to determine whether the user can make the
request

 rules() – rules to validate the inputs

 messages() – message the error messages for input validation

 attributes() – how to name attributes’ names in validation
errors

StorePostRequest

 StorePostRequest:

StorePostRequest

 Change store() action in PostController:

DeletePostRequest

 DeletePostRequest:

DeletePostRequest

 Change destroy() action in PostController:

Middlewares
Filtering requests and responses

Middleware
«before»

Middleware
«after»

Request

Router

Application

Response

Middlewares
Before
BeforeBefore

Before
BeforeAfter

Middlewares

 Middlewares are bootstrapped with laravel core code

 Loaded middleware are listed in app/Http/Kernel.php

 $middleware = […] → Middlewares that are ALWAYS ran during every request

 $middlewareGroups = […] → Middlewares grouped under a common label to

apply them all together at once

 $routeMiddleware = […] → Middleware that can be applied to routes

Some out-of-the box middlewares

 CheckForMaintenanceMode → allows to disable application

(php artisan down|up)

 ValidatePostSize → Check max post size against php.ini settings

 TrimStrings → remove any empty spaces before and/or after strings

 ConvertEmptyStringsToNull → convert empty strings to null values

 TrustProxies → Handles trusted proxies (load balancers, etc…)

Applying route middlewares

 Chain ->middleware([…]) after each route

 Example, constrain a single route to be accessible only to authenticated

users:

Route::get('/test', function () {
return 'ok';

})->middleware(['auth']);

Defining «before» middlewares

 Define a middleware allowing to access resource only on seconds multiple of four
(!!!)

 Add it to App/Http/Kernel.php

 Apply to test route

php artisan make:middleware AllowEveryFourSeconds

protected $routeMiddleware = [
…
‘four_seconds’ => \App\Http\Middleware\AllowEveryFourSeconds::class,

];

Route::get('/test', function () {
return 'ok';

})->middleware(['four_seconds']);

class AllowEveryFourSeconds
{

/**
* Handle an incoming request.
*
* @param \Illuminate\Http\Request $request
* @param \Closure $next
* @return mixed
*/
public function handle($request, Closure $next)
{

$time = Carbon::now();
if (($time->second % 4) !== 0)

abort(403,'Time is ' . $time->format('H:i:s'));
return $next($request);

}
}

Defining «after» middlewares

 Define a middleware inverting the content of the response

 Add it to App/Http/Kernel.php

 Apply to test route

php artisan make:middleware InvertResponse

protected $routeMiddleware = [
…
‘invert’ => \App\Http\Middleware\InvertResponse::class,

];

Route::get('/test2', function () {
return 'ok';

})->middleware([‘invert']);

<?php

namespace App\Http\Middleware;

use Closure;

class InvertResponse
{

/**
* Handle an incoming request.
*
* @param \Illuminate\Http\Request $request
* @param \Closure $next
* @return mixed
*/

public function handle($request, Closure $next)
{

$response = $next($request);
$response->setContent(strrev($response->getContent()));
return $response;

}
}

Using events
Subscriber/Listener Model

Events model

 Basic Observer implementation

 Suscribe/listen to events

 Definition of

 Events – The event that are generated

 Listeners – The observers for the events

 Decoupling of application logic (multiple listeners for
same event)

Defining events

 Open App\Http\Providers\EventServiceProvider.php

 Define you events and listeners

 Creates missing events and listeners under App\Events and App\Listeners

respectively

protected $listen = [
'App\Events\Event' => [

'App\Listeners\EventListener',
],

];

php artisan event:generate

Event Example

 On blog deletion write a log entry

 On blog deletion write its content to disk

protected $listen = [
'App\Events\Event' => [

'App\Listeners\EventListener',
],
'App\Events\PostDeletedEvent' => [

'App\Listeners\LogDeletedPost',
'App\Listeners\BackupDeletedPost',

]
];

php artisan event:generate

 PostDeletedEvent

 LogDeletedPost

 BackupDeletedPost

public function __construct(Post $post)
{

$this->post = $post;
}

public function handle(PostDeletedEvent $event)
{

Log::info('Post deleted: ' . $event->post);
}

public function handle(PostDeletedEvent $event)
{

Storage::put('post_' . $event->post->id . '.txt', $event->post->content);
}

Stopping event propagation

 Suppose you want to stop event propagation for posts

having content longer than 10 characters

 Return false to stop propagation

public function handle(PostDeletedEvent $event)
{

Log::info('Post deleted: ' . $event->post);

if (strlen($event->post->content) > 10)
return false;

}

Thank you!
What’s next…

• ORM data manipulation

• Route definition techniques

• Url generation

• Internationalization

• Resources

• Model Policies

• …

