
#2

Handling

Requests and Events

write@robertogallea.com | http://www.robertogallea.com

mailto:write@robertogallea.com

Worksop outline

Model binding

Authorization scaffolding

Custom Request handlers

Middlewares

Using Events

Model binding
Automatically injecting models in controllers’ actions

Model binding

 If route parameter is type hinted, its value considered as the row id key, and

model is automatically loaded

Model binding

 What if… I don’t want to show id in links?

 Example: use Uuid (uuid4) → random alphanumeric string, can (and should)

supposed as universally unique*

 Use a key different than primaryKey, by overriding model method

getRouteKeyName()

Add migration for uuid

php artisan make:migration add_uuid_to_posts
class AddUuidToPosts extends Migration
{

public function up()
{

Schema::table('posts', function($table) {
$table->string('uuid',36)->unique();

});
}

public function down()
{

Schema::table('posts', function($table) {
$table->dropColumn('uuid');

});
}

}

Authorization scaffolding
Gate definition

Define access to resources

 Out-of-the-box authorization layer

 Gates

 Test if certain user is allowed to access some resource

 Example: a post can be deleted only by its creator

 Condition: author_id === authenticated_user_id

Gate definition

 For being used, Gates must be defined

 Generally, they are defined in Service Providers

 Define Gates in

AuthServiceProvider

Service Provider: Piece of code that

«bootstraps» application core components

 Use them inside Controllers to test if user can access

the resource

 Note: For testing current authenticated user

Gate::allows(‘delete-post’, $post)

Auth::user()->can(‘delete-post’,$post)

 Note: Gate::denies(‘delete-post’,$post) is the inverse

Gate usage

Gate usage

 Conditionally render view according to gates

Custom Requests
Decoupling input validation from controllers

Custom requests

Used for moving data validation logic

outside of controller

Cleaner!

Defining custom request

 Run php artisan make:request StorePostRequest

 Run php artisan make:request DeletePostRequest

 Creates app/Http/Requests/StorePostRequest.php
and DeletePostRequest.php

 Four methods:

 authorize() – to determine whether the user can make the
request

 rules() – rules to validate the inputs

 messages() – message the error messages for input validation

 attributes() – how to name attributes’ names in validation
errors

StorePostRequest

 StorePostRequest:

StorePostRequest

 Change store() action in PostController:

DeletePostRequest

 DeletePostRequest:

DeletePostRequest

 Change destroy() action in PostController:

Middlewares
Filtering requests and responses

Middleware
«before»

Middleware
«after»

Request

Router

Application

Response

Middlewares
Before
BeforeBefore

Before
BeforeAfter

Middlewares

 Middlewares are bootstrapped with laravel core code

 Loaded middleware are listed in app/Http/Kernel.php

 $middleware = […] → Middlewares that are ALWAYS ran during every request

 $middlewareGroups = […] → Middlewares grouped under a common label to

apply them all together at once

 $routeMiddleware = […] → Middleware that can be applied to routes

Some out-of-the box middlewares

 CheckForMaintenanceMode → allows to disable application

(php artisan down|up)

 ValidatePostSize → Check max post size against php.ini settings

 TrimStrings → remove any empty spaces before and/or after strings

 ConvertEmptyStringsToNull → convert empty strings to null values

 TrustProxies → Handles trusted proxies (load balancers, etc…)

Applying route middlewares

 Chain ->middleware([…]) after each route

 Example, constrain a single route to be accessible only to authenticated

users:

Route::get('/test', function () {
return 'ok';

})->middleware(['auth']);

Defining «before» middlewares

 Define a middleware allowing to access resource only on seconds multiple of four
(!!!)

 Add it to App/Http/Kernel.php

 Apply to test route

php artisan make:middleware AllowEveryFourSeconds

protected $routeMiddleware = [
…
‘four_seconds’ => \App\Http\Middleware\AllowEveryFourSeconds::class,

];

Route::get('/test', function () {
return 'ok';

})->middleware(['four_seconds']);

class AllowEveryFourSeconds
{

/**
* Handle an incoming request.
*
* @param \Illuminate\Http\Request $request
* @param \Closure $next
* @return mixed
*/
public function handle($request, Closure $next)
{

$time = Carbon::now();
if (($time->second % 4) !== 0)

abort(403,'Time is ' . $time->format('H:i:s'));
return $next($request);

}
}

Defining «after» middlewares

 Define a middleware inverting the content of the response

 Add it to App/Http/Kernel.php

 Apply to test route

php artisan make:middleware InvertResponse

protected $routeMiddleware = [
…
‘invert’ => \App\Http\Middleware\InvertResponse::class,

];

Route::get('/test2', function () {
return 'ok';

})->middleware([‘invert']);

<?php

namespace App\Http\Middleware;

use Closure;

class InvertResponse
{

/**
* Handle an incoming request.
*
* @param \Illuminate\Http\Request $request
* @param \Closure $next
* @return mixed
*/

public function handle($request, Closure $next)
{

$response = $next($request);
$response->setContent(strrev($response->getContent()));
return $response;

}
}

Using events
Subscriber/Listener Model

Events model

 Basic Observer implementation

 Suscribe/listen to events

 Definition of

 Events – The event that are generated

 Listeners – The observers for the events

 Decoupling of application logic (multiple listeners for
same event)

Defining events

 Open App\Http\Providers\EventServiceProvider.php

 Define you events and listeners

 Creates missing events and listeners under App\Events and App\Listeners

respectively

protected $listen = [
'App\Events\Event' => [

'App\Listeners\EventListener',
],

];

php artisan event:generate

Event Example

 On blog deletion write a log entry

 On blog deletion write its content to disk

protected $listen = [
'App\Events\Event' => [

'App\Listeners\EventListener',
],
'App\Events\PostDeletedEvent' => [

'App\Listeners\LogDeletedPost',
'App\Listeners\BackupDeletedPost',

]
];

php artisan event:generate

 PostDeletedEvent

 LogDeletedPost

 BackupDeletedPost

public function __construct(Post $post)
{

$this->post = $post;
}

public function handle(PostDeletedEvent $event)
{

Log::info('Post deleted: ' . $event->post);
}

public function handle(PostDeletedEvent $event)
{

Storage::put('post_' . $event->post->id . '.txt', $event->post->content);
}

Stopping event propagation

 Suppose you want to stop event propagation for posts

having content longer than 10 characters

 Return false to stop propagation

public function handle(PostDeletedEvent $event)
{

Log::info('Post deleted: ' . $event->post);

if (strlen($event->post->content) > 10)
return false;

}

Thank you!
What’s next…

• ORM data manipulation

• Route definition techniques

• Url generation

• Internationalization

• Resources

• Model Policies

• …

